Counting Errors With Try/Catch Blocks

One good use of Try/Catch blocks is to record information about errors, in order to generate a report later in the build. There are several advantages to
doing this:

® The build doesn't abort at the first error, so you get more information if several projects fail to compile.

® You can recover from minor errors

® You can treat each error differently. For example, build errors are emailed to developers, deployment errors emailed to operations.
® You can record your own statistics and logs.

Here's a simple example which builds all the projects listed in a text file. The variable ErrorCount records the total number of errors, while ErrorProjects
builds a list of the projects which have failed.

Description Enabled Ignore Failure Status
% set Variable ErrorCount to [0] e [Completed |
4% set Variable ErrorProjects to [] e [Completed |

= | File Contents Iterator | | Iteration 10f3 |
& 2 Try [Completed |

&f Build V5.Met Solution [c:'\builds!3%Project®G.sin | e Erro
= [Catch [Completed |
.hi.? Set Variable [Increment variable ErrorCount] | Faused
E Append Tao Variable [ErrorProjects |]
| End
= B If [%ErrorCount?s] > [0] e
_ﬁ MessageBox %eErrorCount® errors. |:|

W Stop Run [Failure]

= B Else

b MessageBox Build succeeded,

O

The steps are as follows:

. Initialise the two variables.

. lterate over the contents of the file.

. Use a Try action to wrap around the Build VS.Net Solution action. If the compilation succeeds, the Catch part is not run.

. If the compilation fails, the Catch part is run: the ErrorCount variable is incremented, and the ErrorProjects variable is appended to. The build then
continues on the next loop of the iterator.

. After all the projects are built, a message is shown if there was at least one error. We then use a Stop Run action to signal that the build as a
whole has failed.

6. If there was no error, a different message is shown. By default, builds terminate with a success code, so we don't need a Stop Run action here.

A WN PP

(&)

More ideas:

® |nstead of showing a message, you could record the count and list of failed projects to a text file.

® To gain more information about any error, you could use Log to Variable. See the Analysing Output tutorial.

® You can use Try/Catch blocks at a very high level, wrapping calls to Action Lists or even other projects with the Include Project action.
® Set a custom Action Log Title on the Stop Run action to explain why the build is stopping:

Properties o x
B Behaviour -
Enabled v b
Ignore Failure r
Pause Interval]
Retry Attempts i]
Retry Pause Intery 1000
B Delete Files
Delete hidden files False
Delete read only filiFalse
Fail if no file True
File spedfication Delete File(s) [*.obj]
B Description

m

Comment Although the abject files shoud| be deaned uj
Description Delete File(s) [*.obj]
B Identity
Action Mame Delete File(s)
Package C:YProgram Files (x36)\FinalBuilder 7\FBFile.b
B Logging B

Action Log Tile Failing due to %%errorcountt errors, These p
Expand Action Log v
Hide Action From L[
Log Action Properti [

Action Log Title
Sets a different title for the action for legging purposes. This title is
only ever used in the Log.

Clear this property to revert to the Description.

Scripting: Action.ActionLogTitle

Bl Projects ' Actions [l

	Counting Errors With Try/Catch Blocks

