
Property Collectors

What are Property Collectors?
How are Property Collectors Used?

Actions
Manually Providing a Tool Path

Configuration
Actions
Stage Options

Repositories
Why Should I Use Property Collectors?
How Do I Know When My Tool Has Registered With Continua?
Property Collector Types
Agent and Server Property Collectors
Viewing Property Collectors
Editing Property Collectors

Namespace
Run On
Type
Property Name
Executable
Search Paths
Register folder property
Extract version info
Extra File Properties

Creating Custom Property Collectors
Namespace
Run On
Type

Restoring Default Property Collectors
Continua Cannot Find My Build Tool
Continua Does Not have a Property Collector for my Tool

What is a Property Collector Type?
How to access properties gathered from Property Collectors

FinalBuilder
DotNetFramework
VisualStudio
MSTest
File Version
Path Access Plugin
Path Finder Plugin
Registry Key Finder
Environment Variable
Environment Variables
Operating System
Operating System

Agent/Server Properties and Property Collectors
Actions/Repositories and Property Collector Namespaces

Actions
Repositories

Why it's a good idea to use a property collector.

What are Property Collectors?

Property Collectors gather information on the build tools that are installed on your Continua server and agents. Property Collectors run every time the
Continua service starts and they search your server and agents for any build tools that are installed on these machines. If a build tool is found then
Continua will create properties on either the server or the agent which will provide Continua information regarding that tool (i.e. path to the tool, tool
version, etc.).

There are several types of property collectors, however the Path property collector is the most widely used. The path property collector is used to find
where a certain build tool is located. Path property collectors are designed to look in several common directories when trying to find a particular build tool.

For example, lets look at the default Git property collector for the server.

This property collector is called Git.Default and it attempts to find Git.exe in the following locations on the server:

%PATH% (This refers to the 'path' environment variable)
%PROGRAMFILES%\Git\bin (refers to the 'programfiles' environment variable)%PROGRAMFILES%
%PROGRAMFILES(x86)%\Git\bin (refers to the 'programfiles(x86)' environment variable)%PROGRAMFILES(x86)%

When the property collectors run, our Git property collector will check the above directories for the Git executable and if Continua can find it then a server
property called Git.Default.Path which will point to the location of the Git executable. Continua then uses this property to check whether Git is installed on
your server.

By default, Continua comes with an extensive list of property collectors that will try to locate the majority of the tools that you will use during your builds.
These collectors will search standard install locations where these tools are usually installed. If you have installed any tools in a non-standard directory
then you may need to modify these collectors.

How are Property Collectors Used?

Property Collectors are used every time you use a build tool or access a repository through Continua. Most of the time you will be unaware property
collectors are in use due to the extensive list of default property collectors that are included automatically in Continua.

Property Collectors are used in the following areas:

Actions

When creating or editing an you may notice the field at the bottom of the dialog. This property lists every path property collector that action Using Using
points to the current action tool. For example, if you create an NUnit action, its property will list every NUnit path property collector (as shown Using
below). By selecting a property collector, you are telling that action to use a specific version of the build tool. For the NUnit example, if we select NUnit
2.6.2 then this action will only ever execute using the NUnit version 2.6.2. This also means that this action (and its parent's stage) will only run on an agent
that has NUnit 2.6.2 installed and the executable is locatable by the property collector.

As all actions are executed on an agent, the property . If you create a custom Using only includes property collectors that are set to run on agents
property collector for an action, make sure it is set to run on agents.

Note: By default, all property collectors listed in the property are default property collectors and they all have their "Run On" attribute set to Agent. Using
Since they're all set as Agent property collectors, we construct an which shows why an Agent may not be compatible with a Agent Compatibility Matrix
stage. Continua determines the compatibility of an agent by checking the Using property of all the actions in that stage. If the selected property collector
matches its corresponding property on the agent then that agent is compatible with the current stage. For example, with the NUnit 2.6.2 property collector
selected, the compatibility matrix will check which agents have the nunit.2.6.2.path property (This property was automatically generated by the NUnit.2.6.2

. If the agent includes this property then Continua found the NUnit 2.6.2 executable on that agent.property collector)

Some simple actions do not have the Using property. These actions run either natively within Continua or Windows and do not require an external tool to
run. These actions include the , action and most File operation actions.Delay action Tag Build action

If your build tool (or build tool version) does not appear in the property (i.e. does not have a property collector in Continua), then you can create a Using
custom property collector that points to your build tool. Creating custom property collectors is described further down this page in the Create Custom

 section.Property Collectors

Manually Providing a Tool Path

If your build tool does not appear in the property or you are defining a unique executable for an action, then you can manually set the build tool path Using
of that action. By selecting custom in the property you will then see the property appear at the bottom of the dialog (as shown below).Using Path

While it is highly recommended that you create a custom property collector, there are some scenarios where you will just want to provide the path to your
build tool. Read the section below for reasons why custom property collectors are a good idea.Why Should I Use Property Collectors

In addition to the property, you can manually specify property collector properties by using the in any action.Using Query Syntax

In addition to the "Using" drop down list, you can manually specify property collector properties by using the in any action. Chances are at Query Syntax
some point you will need to use an executable in your workflow that Continua doesn't have an action form, for example FTP. To do this, you would add a
property collector for your FTP executable, then use the and specify the property using the . Accessing properties Execute Program action Query Syntax
from property collectors using the query syntax is described . Please note, when specifying properties manually there's no way for Continua to check below
if an Agent is compatible until the action is executed (at run time). If you want to manually specify a path and have the compatibility of an Agent detected
before run time, then you would need to add a Stage Option that checks of the path exists. As an example, your stage option would look something like
this: with the condition drop down set to .$Agent.MyFtpExecutable.Path$ Exists

https://wiki.finalbuilder.com/display/continua/Actions
https://wiki.finalbuilder.com/display/continua/Agent+Compatibility+Matrix
https://wiki.finalbuilder.com/display/continua/Delay+Action
https://wiki.finalbuilder.com/display/continua/Tag+Build+Action
https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772
https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772
https://wiki.finalbuilder.com/display/continua/Execute+Program+Action
https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772

Configuration

Actions

When creating an action in the , you may notice a "Using" field at the bottom of the dialog on the first tab for all actions that are backed Stage Editor
by an executable. Obviously actions like and don't require executables to perform their job so they won't have a "Using" drop Delay Tag Build action
down list. The "Using" list contains the property collectors that are of use to the action. Once a property collector is selected from this list and the
action is saved to the Stage and subsequently the Configuration, a requirement is then set on the Configuration for that property needing to be
available before the Configuration can execute. One common theme for all property collectors found in the "Using" drop down in actions is they all
use a property collector type that returns a property. By default, all actions will take the property collector assigned to them and only use the Path Pa

 property since that's all the action needs... the path to the executable to run the action.th

Note: Currently all property collectors listed in the "Using" drop down in actions are all default property collectors and all have their "Run On"
attribute set to Agent. Since they're all set as Agent property collectors, we can construct an which allows the user to see Agent Compatibility Matrix
why an Agent may not be compatible with a Configuration. Determining the compatibility of an Agent is as simple as scanning all actions in a
Configuration and seeing if the property collectors they specified to use can find those properties on an Agent.

Note: To see how to get your own property collectors listed in the "Using" drop down, a full explanation can be found .below

In addition to the "Using" drop down list, you can manually specify property collector properties by using the in any action. Chances Query Syntax
are at some point you will need to use an executable in your workflow that Continua doesn't have an action form, for example FTP. To do this, you
would add a property collector for your FTP executable, then use the and specify the property using the . AcceExecute Program action Query Syntax
ssing properties from property collectors using the query syntax is described . Please note, when specifying properties manually there's no below
way for Continua to check if an Agent is compatible until the action is executed (at run time). If you want to manually specify a path and have the
compatibility of an Agent detected before run time, then you would need to add a Stage Option that checks of the path exists. As an example, your
stage option would look something like this: with the condition drop down set to .$Agent.MyFtpExecutable.Path$ Exists

Stage Options

Stage Options are one place where you can directly access properties provided by property collectors. By using the , you can use Query Syntax
access properties such as the Environment Variables of an Agent or the version of a file if you've setup a File Version property collector for that file.
Accessing properties from property collectors using the query syntax is described .below

Repositories

Repositories are much like actions with their "Using" field containing a list of property collectors. Like actions, Repository property collectors must have a
Path property, currently only the Path Finder Plugin property collector type is used for Repository property collectors. What's important to note with
Repository property collectors is they're required to run on the Server but not the Agent. The reason for this is, Continua manages your repository from the
Continua Server and not Agents which means the Server is the only one that absolutely needs access to the executable that manages the Repository.

Why Should I Use Property Collectors?

How Do I Know When My Tool Has Registered With Continua?

Property Collector Types

Agent and Server Property Collectors

Viewing Property Collectors

https://wiki.finalbuilder.com/display/continua/Projects
https://wiki.finalbuilder.com/display/continua/Delay+Action
https://wiki.finalbuilder.com/display/continua/Tag+Build+Action
https://wiki.finalbuilder.com/display/continua/Agent+Compatibility+Matrix
https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772
https://wiki.finalbuilder.com/display/continua/Execute+Program+Action
https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772
https://wiki.finalbuilder.com/display/continua/Stages#Stages-EditingStageOptions
https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772

Editing Property Collectors

Namespace

The namespace of the property collector.

Run On

Property collectors can be run on either the server or an agent.

Type

The type of the property collector.

Property Name

The name of the property to assign the full path to.

Executable

The executable of the property collector.

Search Paths

One path per line.

Note: Environment variables e.g. %HOME% can be used and will be expanded.

Register folder property

Tick to assign the path to the folder where the executable is found to a property.

Extract version info

Tick to assign version details for the executable to a Version property.

Extra File Properties

Specify any file paths to add as extra properties. Enter one name value pair per line. e.g. Namespace.PropertyName=relative file path.

The relative file path can be a file name or a file path relative to main executable path. If the file path is omitted then the main executable path will be Note:
added to the extra property name.

Creating Custom Property Collectors

Namespace

The namespace of the property collector.

Run On

Property collectors can be run on either the server or an agent.

Type

The type of the property collector.

Restoring Default Property Collectors

Continua Cannot Find My Build Tool

Continua Does Not have a Property Collector for my Tool

Property Collectors tell Continua to gather certain properties on either an Agent or on the Server. Once a property collector has been defined, it will be sent
out to all interested parties (Agents/Server, as defined in the Run On attribute of the collector). The property collector then gathers information on the
target and reports those results to the server for later use. The type of property to gather is defined when the property collector is created.

What is a Property Collector Type?

Currently in Continua, there's 11 property collector types. Each type returns a value or a set of values. The table below outlines the property
collector types and their return values.

Property Type Description Returns (Properties)

FinalBuilder Enter the version number of Finalbuilder to
check for.

Version, MajorVersion, MinorVersion, RelaseVersion, BuildVersion,
Path.

DotNetFramework Select the Framework Version of .NET. FrameworkPath, Path, FrameworkPathX86,FrameworkPathX64,
PathX86, PathX64

VisualStudio Select the version of Visual Studio to check for. Path

File Version Check the File/Product Version of the file
specified.

Version, MajorVersion, MinorVersion, RelaseVersion, BuildVersion

Path Access Plugin Enter a path to check for its existence. HasAccess (boolean value)

Path Finder Plugin Enter a file and paths where it can be found. Path

Registry Key
Finder

Search for a Registry Key and its Value. Value of Registry Key Name.

Environment
Variable

Enter an environment variable to store. < >EnvironmentVariableName

Environment
Variables

Stores a list of all environment variables. All environment variables.

Operating System Stores a list of important Operating System
information.

Platform, Runtime, Name, Arch, ServicePack, HostName

IsWindowsOS (bool), IsMacOS (bool), IsLinuxOS (bool)

ASP.NET MVC Checks for a certain version of ASP.NET MVC
libraries.

IsInstalled (boolean value)

How to access properties gathered from Property Collectors

In the above section, it was mentioned that properties gathered from Property Collectors could be accessed using the . The first step to Query Syntax
accessing these properties is to specify the source of the property, that being or . The sections below contain an example of each property Server Agent
collector type, some made up values and how to access the resulting properties. The resulting properties match up with the return values from the table ab

.ove

Note: All expression examples below assume the property collector was setup to run on an Agent, simply replace Agent with Server if you created a server
property collector.

FinalBuilder

Assuming the namespace when creating the property collector was .FB

Properties

https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772

$Agent.FB.Version$

$Agent.FB.MajorVersion$

$Agent.FB.MinorVersion$

$Agent.FB.RelaseVersion$

$Agent.FB.BuildVersion$

$Agent.FB.Path$

DotNetFramework

Assuming the namespace when creating the property collector was .NET

Properties

$Agent. .FrameworkPath$ (default)NET

$Agent.NET.FrameworkPathX86$

$Agent.NET.FrameworkPathX64$

$Agent. .Path$ (deprecated, retained for backwards compatibility only)NET

$Agent.NET.PathX86$

$Agent.NET.PathX64$

VisualStudio

Assuming the namespace when creating the property collector was .VisualStudio

Properties

$Agent.VisualStudio.Path$

MSTest

Assuming the namespace when creating the property collector was .MSTest

Properties

$Agent.MSTest.Path$

File Version

Assuming the namespace when creating the property collector was .MyFile

Properties

$Agent.MyFile.Version$

$Agent.MyFile.MajorVersion$

$Agent.MyFile.MinorVersion$

$Agent.MyFile.RelaseVersion$

$Agent.MyFile.BuildVersion$

Path Access Plugin

Assuming the namespace when creating the property collector was .MyFile

Properties

$Agent.MyFile.HasAccess$

Path Finder Plugin

Assuming the namespace when creating the property collector was and the property name was .Programs MyFile

Properties

$Agent.Programs.MyFile$

Registry Key Finder

Assuming the namespace when creating the property collector was and the property name was .Registry MyRegVal

Properties

$Agent.Registry.MyRegVal$

Environment Variable

Assuming the namespace when creating the property collector was and the property name was .Env BINPATH

Properties

$Agent.Env.BINPATH$

Environment Variables

Assuming the namespace when creating the property collector was .Env

Properties

$Agent.Env. $<environment_variable>

The results for this property collector are the environment variables so they're different for every machine.

Operating System

Assuming the namespace when creating the property collector was .OS

Properties

$Agent.OS. $Platform

$Agent.OS.Runtime$

$Agent.OS.Name$

$Agent.OS.Arch$

$Agent.OS.ServicePack$

$Agent.OS.HostName$

$Agent.OS.IsWindowsOS$

$Agent.OS.IsMacOS $

$Agent.OS.IsLinuxOS$

Operating System

Assuming the namespace when creating the property collector was .MVC

Properties

$Agent.MVC.IsInstalled$

Agent/Server Properties and Property Collectors

After adding a property collector, the resulting property will show up on the Agent or Server's properties list with the actual value. Things like Operating
System version will show up and any kind of check for paths/files or file access will display the true values. You won't see the changes in the UI
immediately after entering a property collector. The server properties have a refresh button to force the properties to get updated and the Agent will update
after polling the server which usually happens every minute or so. If a property doesn't show up, there's a chance you either configured the property
collector incorrectly or the Server or that particular Agent simply couldn't find what you told it to look for.

Actions/Repositories and Property Collector Namespaces

Property Collector Namespaces may seem a bit redundant or verbose but they serve an important purpose. Each action and Repository which use
property collectors also define a namespace pattern that is used to determine which property collectors it's interested in. When you create a property
collector and give it a namespace which matches the pattern in an action/repository, it will show up in the "Using" list of that action/repository.

The tables below show the patterns for each action/repository and namespace examples which show up in the 'Using' drop down list of actions
/repositories.

Note: Patterns are case insensitive.

Actions

Plugin Pattern Namespace Examples

7-Zip Create

7-Zip Extract

^7-Zip.* 7-Zip.Ver2.1

7-Zipper

7-zip-8.09

Ant ^Ant.* Ant.9.11

Antler

ant.V-10.6

Control Azure Web App

Create Azure App Service Plan

Create Azure Directory

Create Azure File Share

Create Azure Function

Create Azure Resource Group

Create Azure Storage Account

Create Azure Storage Container

Create Azure Web App

Delete Azure App Service Plan

Delete Azure Blob

Delete Azure Directory

Delete Azure File

Delete Azure File Share

Delete Azure Function

Delete Azure Resource Group

Delete Azure Storage Account

Delete Azure Storage Container

Delete Azure Web App

Deploy Azure Function

Deploy Azure Web App

Get Azure Storage Account Keys

Upload Azure Blob

Upload Azure File

Upload Azure Web App

^Azure.Cli.*

Bower Install

Bower Update

^Bower.*

Cake ^Cake\..*

Docker Build

Docker Command

Docker Commit

Docker Inspect

Docker Pull

Docker Push

Docker Run

Docker Stop

Docker Tag

^Docker.*

DotNet Add

DotNet Build

DotNet Pack

DotNet Publish

DotNet Remove

DotNet Restore

DotNet Run

DotNet Test

^DotNet.Cli.*

Fake ^Fake\..*

FinalBuilder FinalBuilder\..* FinalBuilder.8

FianlBuilder.8.09

finalbuilder.600

Grunt ^Grunt\..*

Gulp ^Gulp\..*

Karma ^Karma\..*

Maven Maven\..*

Mocha ^Mocha\..*

MSBuild ^msbuild\..* MSBuild.2.0

MSBuild.4.0

MSBuild.12.0

MSTest ^MSTest.* MSTest.1.22

MSTest44

mstest3

NAnt ^NAnt.* NAnt10.3

nant.9.33

nantnant4

NCover 3 ^NCover\.Console.* NCover.Console.3.22

NCover.Console9

ncover.console1

NCover Reporting ^NCover\.Reporting.* NCover.Reporting.1.33

NCover.Reporting4.99

ncover.reporting2

NPM Install

NPM Pack

NPM Publish

NPM Update

^NPM.*

NuGet Delete

NuGet Install

NuGet Pack

NuGet Push

NuGet Spec

NuGet Update

^NuGet.* NuGet.1.99

NuGet88

nuget23

NUnit ^NUnit.* NUnit.1.22

NUnit44

nunit3

Octo Pack

Octo Push

^Octo.*

OpenCover ^OpenCover\.Console.*

PowerShell ^PowerShell.* PowerShell.1.6

PowerShell99

powershell2

Rake ruby\.runtime\..*

Report Generator ^ReportGenerator\.*

SQL Package Export

SQL Package Extract

SQL Package Import

SQL Package Publish

SQL Package Script

^SqlPackage\..*

Visual Studio ^VisualStudio\..* VisualStudio.10

VisualStudio.2012

visualstudio.win

VSTest ^VSTest.Console*

XUnit ^XUnit\..* XUnit.1.22

XUnit.123

XUnit.4.5.6

Repositories

Plugin Pattern Namespace Examples

Bazaar ^bazaar\..* Bazaar.2.4

Bazaar.1

bazaar-old

Git ^git\..* Git.1.6

Git.9

git.newest

Mercurial ^mercurial\..* Mercurial.9.4

Mercurial.Latest

mercurial.2

Perforce ^perforce\..* Perforce.3.6

Perforce.old

perforce.1

Plastic SCM ^plasticscm\..*

Subversion ^subversion\..* Subversion.9.77

Subversion.newest

subversion.1

Surround SCM ^surroundscm\..* SurroundSCM.1.2

SurroundSCM.testing

surroundscm.9

Vault ^vault\..* Vault.4.9

Vault.WIN

vault.8

The picture below shows a PowerShell property collector being created. Notice how the namespace value matches the PowerShell pattern in the actions
table above.

The next picture shows the property collector that was just created in the "Using" list of the PowerShell action.

1.

2.

3.

Why it's a good idea to use a property collector.

By not using property collectors you take away a lot of the benefits Continua offers. Unless you take additional precautions you will inevitably end up
breaking a build or hindering the performance of builds. The best example of a property collector's benefits is when using an action which requires an
executable be installed on the agent. Lets take NUnit for example and assume you haven't used a property collector for your and instead NUnit Action
used a custom defined path. Here is where things can go wrong.

Continua won't check if the path you provided exists (with a property collector it will), therefore it won't stop you from before the build starts
running a build. When this happens the build will fail if it can't find the path.
Since Continua doesn't check the path before the build starts, it will send the stage to execute on the best available agent which could be an
agent where you forgot to install the NUnit executables.
The will report agents as compatible when there's a chance they aren't if you didn't install the NUnit executables.Agent Compatibility Matrix

https://wiki.finalbuilder.com/display/continua/NUnit+Action
https://wiki.finalbuilder.com/display/continua/Agent+Compatibility+Matrix

	Property Collectors

