
1.
2.
3.
4.

5.

6.

Counting Errors With Try/Catch Blocks
One good use of Try/Catch blocks is to record information about errors, in order to generate a report later in the build. There are several advantages to
doing this:

The build doesn't abort at the first error, so you get more information if several projects fail to compile.
You can recover from minor errors
You can treat each error differently. For example, build errors are emailed to developers, deployment errors emailed to operations.
You can record your own statistics and logs.

Here's a simple example which builds all the projects listed in a text file. The variable ErrorCount records the total number of errors, while ErrorProjects
builds a list of the projects which have failed.

The steps are as follows:

Initialise the two variables.
Iterate over the contents of the file.
Use a Try action to wrap around the Build VS.Net Solution action. If the compilation succeeds, the Catch part is not run.
If the compilation fails, the Catch part is run: the ErrorCount variable is incremented, and the ErrorProjects variable is appended to. The build then
continues on the next loop of the iterator.
After all the projects are built, a message is shown if there was at least one error. We then use a Stop Run action to signal that the build as a
whole has failed.
If there was no error, a different message is shown. By default, builds terminate with a success code, so we don't need a Stop Run action here.

More ideas:

Instead of showing a message, you could record the count and list of failed projects to a text file.
To gain more information about any error, you could use Log to Variable. See the Analysing Output tutorial.
You can use Try/Catch blocks at a very high level, wrapping calls to Action Lists or even other projects with the Include Project action.
Set a custom Action Log Title on the Stop Run action to explain why the build is stopping:

	Counting Errors With Try/Catch Blocks

