A Configurable Build

Frequently, when you set up a FinalBuilder project to build a product, you actually have several closely related products to build. There are several ways to
solve this problem. This tutorial demonstrates one approach, using INI files, prompts and switch statements to make one build process configurable.

First, define a short code for each distinct product. Let's say we have two products, ABC and DEF. However, sometimes ABC needs to be built with an
extra sub-product. We'll call that combination ABC2.

INI File

Create an INI file with some parameters for each build:
[ABC]

Sol uti onFi | e=ABC. sl n

Description=A brilliant cal cul ator

SVNBr anch=Pr od/ ABC

[DEF]

Sol uti onFi | e=DEF. sl n

Description=Data encryption filter

SVNBr anch=Pr od/ DEF

[ABC2]

Sol uti onFi | e=ABC. sl n

Description=A brilliant cal culator PLUS
SVNBr anch=Pr od/ ABC

Bui | dABC2=Tr ue

Variables

Create a "productcode" variable. Make it persistent, so that each build can default to the same type as the previous one.

Prompt

Create a "Enhanced prompt for variables" action. Here you will give the user the choice of which build to create. By using the "unsorted list" type with the
current value as the default, a drop down list is shown with the current value already selected.

Enhanced Prompt for Variables

Gerneral | Runtime @ G etings | Dialog Items = Control Order

Select variables
Variables

Type
Sorted List

Caption
ProductCode

Default
OPENS

0s SeProductCo

Values

ProductiMame
ProgramData
ProgramF
ProgramF
Programa432
PSModulePath

At runtime, this will look as follows:

R Product

Which product do you want to build?

ProductCode

Load INI file

Next, we need to load the settings for the chosen build. We first load the mandatory settings, then the optional ones.

We create one "Load Variables from INI" action with these settings:

Load Vanahles from IMI

General Runtime EMS=EM Load Options

ﬁ NI File

c:\Builds\BuildParams.ini =
lh Variables
Variable Type -
[] ProgramData String
[ProgramFiles String
[ProgramFiles(xas) String
[] Programwa432 String
[] PSMaodulePath String
[PUBLIC String
] Qraava String
|:| SESSIOMMAME Siring
SolutionFile String =
[7] svNBranch String
[SystemDrive String =
[SystemRoot String
[] TEMP String M
] ™P String
[] USERDOMAIN

Next, we create one for the optional settings:

Load Vanahles from IMI

General Runtime Details QJEEEsyE

@ Load Options -

IMI file section name
SProductCodes|

Fail if variable not defined
Fail if INI file not found

@ If variable not in INI file -
i) Ignore
@ Fail Action

(7 Write Variable to INI

Use the variables

Now construct your build process, using these variables everywhere:

Build VS.Met Solution

General Runtime EEREG] Build .MET Version Win32 Version Project De

(g solution

Solution File @ %eSolutionFile%s af
Configuration : Win32 -
VS.NET Version : Use MSBuild
Action

I% Apply to Project -
i@ All Enabled Projects
71 All Projects in Solution
() Selected Projects

Ched: Al
O Unchedk Al

Conclusion

The overall result looks like this:

[Enhanced Prompt for Variables [Product - ProductCode]
m Load Variables from INI [C:\Builds'\BuildParams.ini, Variables: Description, SolutionFile,5V...
m Load Variables from INI [C:\Builds'\BuildFarams.ini, Variables: BuildABCZ]
=, E Extract files
E Subversion Export [http: (fsvnserver Rep1/%SVNEranch s |
= B Buid
& Build VS.MNet Solution [%SolutionFile%s]
= B If [StBuildABC2%E] = [True]
&% Build V5. Net Solution [ABC2 7 !

HEEEEHEEEE
OoOoOoOoOooonO

You now have a single build which is capable of building different products. All the same core logic - loading variables, extracting files from your version
control system, building - is stored in only one place. This is much better than having a separate FinalBuilder project for each product. In that situation, if
you found a problem in one build, you would have to fix it in every project individually, making your build process more error prone and labour intensive.

	A Configurable Build

