
NGen 2.0 Install Native Image Action
The Native Image Generator (NGen 2.0) Install Action enables the creation and installation of a native image for an assembly and its
dependencies. Assemblies with native images run faster on the current machine because they can bypass the .NET Just-In-Time
compiler.

Assembly

Specify assembly by file

Enter the explicit path of an assembly to precompile.

Specify an assembly in the global assembly cache

Specify the full display name of an assembly in the global assembly cache. Separate extra properties with commas.

e.g. "bobsAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=1138abc1dabcdfle2".

Framework Version

Use default framework version (vX.X) / Use vX.X

Allows the selection of the .NET version to use for the tool. The minimum is .NET v2.0.

Use 64-bit tools

This options specifies as whether to force the usage of 64-bit tools on a 64-bit system or not. As FinalBuilder is currently a 32-bit
application it will default to running the 32-bit version on a 64-bit system. Check this option if you require the 64-bit version to be run.

On this page:

Options

Scenarios

Generate images for use with a debugger

If this option is turned on debug information is included in the generated image.

Generate images for use with profiler

If this options is turned on a profiler will be able to load the generated image.

Minimise the native image dependencies that are generated

If this option is turned on the native image will be generated with a minimum of dependencies. This is not recommended because non-native
dependencies will cause the Just In Time compiler to be invoked, negating the benefits of Native Images.

Configuration

Configure using executable assembly

The assembly configuration can be taken from an executable configuration. This allows NGen to get a better idea as to what dependencies would be
loaded by the assembly.

Configure using appbase directory

The directory to use as the application base when locating dependencies for the supplied assembly.

Options

Queue for execution by the native image service

Rather than installing directly, the generation and installation can be queued for execution by the Native Image Service. There are three levels of priority
lowest, normal, and highest.

Verbose execution

Includes the maximum amount of information while generating the native assembly. Useful for debugging issues with the action, does slow down
generation however. Therefore we recommend turning this off during normal script runs.

Action Scripting

 | | Toggle All Expand All Collapse All

Action Specific Scripting

Other

Script
Property

Example (Javascript) Valid
Values

Default Persisted Description

AppBasePa

th

Action.AppBasePath = 'C:

\Projects\SimpleProject\';

any text [blank] On save Sets the Configure using appbase directo
 value.ry

AssemblyN

ame

Action.AssemblyName = 'bobsAssembly, Version=1.

0.0.0, Culture=neutral, ' +

 'PublicKeyToken=1138abc1dabcdfle2';

any text [blank] On save Sets the Specify an assembly in the
 value.global assembly cache

AssemblyP

ath

Action.AssemblyPath = 'C:

\Projects\SimpleProject\Output\SimpleProject.dll'

any text [blank] On save Sets the value.Specify assembly by file

Debug Action.Debug = true; true, false false On save Sets the Generate images for use with a
 value. debugger

ExeConfig

Path

Action.ExeConfigPath = 'C:

\Projects\SimpleProject\Output\Config.exe';

any text [blank] On save Sets the Configure using executable
 value. assembly

NoDep Action.NoDep = true; true, false false On save Sets the Minimise the native image
 value. dependencies that are generated

Profile Action.Profile = true; true, false false On save Sets the Generate images for use with
value. profiler

Queued Action.Queued = true; true, false false On save Sets the Queue for execution by the
 value. native image service

QueuePrio

rity

Action.QueuePriority = 2; 1, 2, or 3 3 On save Sets the priority level for the Queue
property.

UseAppBase Action.UseAppBase = true; true, false false On save When set to true it enables the usage of the
AppBasePath property.

#
#
#
https://wiki.finalbuilder.com/display/FB8/_Inc_NGen2.0_Scrp
https://wiki.finalbuilder.com/display/FB8/_Inc_NGen2.0_Scrp
https://wiki.finalbuilder.com/display/FB8/_Inc_NGen2.0_Scrp
https://wiki.finalbuilder.com/display/FB8/_Inc_NGen2.0_Scrp

UseAssemb

lyName

Action.UseAssemblyName = true; true, false false On save When set to true it enables the usage of the
AssemblyPath property.

UseExecCo

nfig

Action.UseExecConfig = true; true, false false On save When set to true it enables the usage of the
ExeConfigPath property.

Verbose Action.Verbose = true; true, false false On save Sets the value. Verbose execution

Common Scripting Properties

Behaviour

Script
Property

Example
(Javascript)

Valid
Values

Default Persisted Description

Enabled Action.

Enabled =

false;

true, false true On save Whether the action is enabled or disabled. Disabled actions are not considered part of a
script. When the script is run they are ignore completely.

Has to be set prior to the action being selected to run. This means the latest this can be
set is in the actions parent.

IgnoreFai

lure

Action.

IgnoreFailure

= true;

true, false false On save When set to true, the action will always report as having successfully completed. The
actions run result is ignored. Even if the action run result is failure, the build will continue.

Has to be set before the action is run to have any affect.

PauseInte

rval

Action.

PauseInterval

= 2;

0 to 18000
 (5 000

hours)

0 On save The number of milliseconds to pause after the completion of an action. The IDE allows
users to skip pause intervals if required. The command line runner does not allow for the
skipping of this interval.

Setting this is preferable to sleeping in a script as the action continues to be responsive,
and handles termination requests.

Has to be set prior to the action run to have any affect.

MaxRetryA

ttempts

Action.

MaxRetryAttemp

ts = 3;

any
positive 32-
bit integer

0 On save The number of times to retry an action when it fails. Each failed run of the action is
counted as a retry attempt. Once all the retry attempts are exhausted the action will return
the result of the last retry attempt.

On a successful run this counter is reset for the next time the action is called. This is
important for loops which contain actions with retry attempts set.

Has to be set prior to the run of the action to have any affect.

RetryPaus

eInterval

Action.

RetryPauseInte

rval = 500;

any
positive 32-
bit integer

1000 On save The number of milliseconds to wait before running a retry of an action. This starts counting
directly after the action fails and is not able to be skipped. Useful for waiting resources to
become available, or locks to be released.

Has to be set before to the run of the action to have any affect.

Description

Script
Property

Example (Javascript) Valid
Values

Default Persisted Description

Comment Action.Comment = 'Loads

config for build';

any text
(single line
shown)

[blank] On save Allows you to add documentation to the action instance.

Descripti

on

Action.Description =

'Upload [Installer]';

any text
(single line
shown)

[action
dependen
t]

On save The text shown in the IDE for the action. Describes the purpose of the
action. Clear this property to revert to an automatically generated
description.

Identity

Script
Property

Example (Javascript) Valid
Values

Default Persisted Description

ActionName Action.SendLogMessage
(Action.ActionName,
stInformation);

 (any text
)read only

[action
dependan
t]

No The name of the action which is shown in the action types list. This is
defined by the action and is not able to be changed. All actions of the
same type will have the same name.

Package Action.SendLogMessage
(Action.Package,
stInformation);

 (any text
)read only

[action
dependan
t]

No The filename of the package from which the action was loaded. All actions
from the same package will have the same package filename.

Logging

Script
Property

Example (Javascript) Valid
Values

Default Persisted Description

ActionLog
Title

Action.
ActionLogTitle =
'Upload [
Installer]';

any text
(single
line
shown)

Action.
Description

On save Sets a different description for the action for logging purposes. This description is
only ever used in the log.

ExpandAct
ionLogTit
le

Action.
ExpandActionLogTitl
e = false;

true, false true On save Enables variables in the ActionLogTitle to be expanded. The expansion occurs at the
time of logging.

HideActio
nFromLog

Action.
HideActionFromLog
= true;

true, false false On save Hides the action from the log. If the action execution results in an error the action is
logged, effectively ignoring this setting.

LogAction
Properties

Action.
LogActionProperties
= true;

true, false false On save Records the properties of the action to the log before the action is run.

LogToVari
able

Action.
LogToVariable =
'MyVariable';

text
name of
variable

[blank] On save Specifies which variable should have the output of the action written to it. The
selected variable is required to be available to the action, otherwise an error will be
raised. The variable will contain the actions output after the action has run.

SuppressS
tatusMess
ages

Action.
SuppressStatusMessa
ges = true;

true, false false On save Stops the logging of all the actions status messages. This stops the action status
messages from being generated, so OnStatusMessage events will not fire when this
options is turned on.

Other

Script
Property

Example (Javascript) Valid
Values

Default Persisted Description

ErrorCount if (Action.ErrorCount
> 0)

 Action.
SendLogMessage('There
were errors', stError);

any positive
32-bit

rea (integer
d only)

0 No Returns the number of errors the action has encountered during its run.
Some actions can encounter more than one error before failing.

Errors Action.SendLogMessage
('Errors encountered'
+ Action.Errors,
stError);

any text
(read only)

[blank] No Returns the description of all the errors encounter by the action during it run.
The error descriptions are concatenated with new lines between each entry.

Locked Action.Locked = true; true, false false On save Locks the properties on the action so that they can not be changed through
the action dialog. When turned on, the only property which can be altered is
the locked property itself. Turning this off again means all other properties
can be altered through the actions edit dialog.

TimedOut if (Action.TimedOut)

 Action.
SendLogMessage('Action
timed out', stWarning);

true, false
(read only)

false No Set to true when the action has timed out waiting for the underlying tool to
complete.

Execute Action Scripting Properties

Extra Command Line

Script
Property

Example (Javascript) Valid Values Default Persisted Description

ExtraCmdLine
ParamsAtEnd

Action.
ExtraCmdLineParamsAtEnd =
'\s \p Text.txt';

any text (validated
by underlying tool)

[blank] On save Specifies additional command line parameters for the
underlying tool. These are added after all command line
parameters added by the action.

ExtraCmdLine
ParamsAtStart

Action.
ExtraCmdLineParamsAtStart
= '\q \ignore:3';

any text (validated
by underlying tool)

[blank] On save Specifies additional command line parameters for the
underlying tool. These are added before all command line
parameters added by the action.

Process

Script
Property

Example
(Javascript)

Valid Values Default Persisted Description

UseErrorD
ialogMoni
tor

Action.
UseErrorDialogM
onitor = true;

true, false false On save Specifies whether to automatically watch for an error dialog which has stalled
the underlying tool. The dialog will be closed, and if this is not possible the
process will be terminated. This option does not work with all underlying tools.

ProcessPr
iority

Action.
ProcessPriority
=
tpBelowNormal;

tpIdle, tpBelowNor
, , mal tpNormal tpA

boveNormal

tpNormal On save Specifies at what priority processes spawned by the action will have. Note that
setting an idle priority will most likely mean the action will not progress. tpIdle is
only included for completeness, typically it should not be used.

Processor
Affinity

Action.
ProcessorAffini
ty = 243;

0 (), (unset 1 to 255
)bit mask

0 On save Specifies which processors spawned processes of the action will be allowed to
run on. The value is in the form of a bit mask. The mask depends on the
number of processors available on the running machine.

A bit mask of 1101 1111 (= 223) for a six processor machine would mean
spawned processes could run all but the 6th processor.

Run As User

Script
Property

Example (Javascript) Valid
Values

Default Persisted Description

Impersonat
eUserName

Action.
ImpersonateUserName
= 'domain/username';

[domain]/
[usernam
e]

[blank] On save Specifies the user credentials with which to run processes spawned by the action.
The user that FinalBuilder is running under, will require the permissions to elevate
their rights and impersonate other users for this to be allowed.

ImpersonateUser needs to be set to true for this to be used.

Impersonat
eUseNetCre
dOnly

ActionImpersonateUseN
etCredOnly = true;

true, false false On save Specifies whether the impersonation should only use the network component of
the supplied users credentials. This allows for simpler access to network
resources which have restricted access.

ImpersonateUser needs to be set to true for this to be used.

Impersonat
eUser

Action.
ImpersonateUser =
true;

true, false false On save Specifies whether processes spawned by the action should be run under a
different set of user credentials.

ExpandImpe
rsonateTok
en

Action.
ExpandImpersonateToke
n = true;

true, false false On save Specifies whether to expand variables found within the impersonate user
password. This is handy for setting the password to a variable and then loading
from a secure file, or using a passed in variable when the script is run.

Impersonat
eUserPassw
ord

Action.
ImpersonateUserPasswo
rd = '8as0dk9JLa!df';

any text [blank] On save Specifies the password to use for the user who is being impersonated. Once set
the value is encrypted for saving into the project (if its saved after this script is
called).

Timeout

Script
Property

Example
(Javascript)

Valid
Values

Default Persisted Description

EnableTim
eout

Action.
EnableTimeou
t = true;

true, false false On save Specifies whether the action should fail if the TimeoutLength expires. The TimeoutLength is
counted from the start of the action running.

TimeoutLe
ngth

Action.
TimeoutLengt
h = 2;

any
positive 32-
bit integer

1 On save Specifies the number of minutes to wait after the start of an action to complete. If the action
does not complete before the timeout length has expired the action is given a failure result,
and the TimedOut property is set to true.

.NET Scripting Properties

Other

Script
Property

Example
(Javascript)

Valid
Values

Default Persisted Description

OverrideS
DKDefault

Action.
OverrideSDKD
efault =
true;

true, false false On save Specifies whether the default SDK version set in the FinalBuilder options should be overridden
for this action. Setting this to true will mean the SDK version will be taken from the
SDKVersion property on the action.

Architect
ure

Action.
Architecture
= ta32;

ta32, ta64 ta32 On save Whether to use the 32-bit or 64-bit versions of the underlying tool. Note that some tools can
not be run as the 64-bit version from a 32-bit process. As a result these tools will either report
an error or simply link to the 32-bit version. Check each tools MSDN reference for more
details.

SDKVersion Action.
SDKVersion
= "v4.0";

v2.0, , v3.0
, , v3.5 v4.0

or

any other
installed .
NET
version

set in
options

On save Sets the overridden SDK version for the underlying tool. The specified SDK version needs to
be installed on the machine otherwise an error will be raised saying the specific tool could not
be found.

Scripting Events
Script
Event

Parameters Description

Befor
eActi
on

Action

:

<TActio

n>

The instance of the current action.
Allows access to the action properties
and methods.

All properties are set to the values
provided by the action editor or their
defaults.

SkipAct

ion :

Boolean

An out parameter which allows for the
action to be skipped during a build.
Default is .false

Called before the action is executed. When called all properties on the action have
been initialised to those provided in the action editor dialog. Properties which have
not been provided are set to their defaults.

Use this event to change anything about the action or perform operations which
need to occur before the action is run. Also this event can be used to skip an action
entirely. If the action is skipped it will report as such in the log, and no more
processing of the action or its scripts will occur.

Run-time errors in this script will stop the action from running and the action will
report as failed.

After
Action

Action

:

<TActi

on>

The instance of the current action.
Allows access to the action properties
and methods.

All properties are set to the values
used during the run of the action.

Action

Result

:

boolean

Indicates if the action succeeded or
failed. Allows for the handling or
overriding of the actions status during
a build.

Contin

ue :

boolean

Indicates if the build should continue
after this action has completed or not.

Return false to stop the build, return
true to ignore the build result and
continue the build. Default is .unset

Called after the action has executed. All properties on the action will be the same
as when the action was run. Any properties which change during the run will be
available at this point (e.g. Exit codes properties).

This event allows for the handling of action error states that where are not directly
handled by the action itself. For example if an certain error code is acceptable it can
be logged and ignored through this event.

Conversely a certain successful run condition that is not desirable could be
reported through this event. To achieve these outcomes set the ActionResult and
Continue parameters to values which reflect the true outcome of the actions run.

Run-time errors produced by this script will cause the action to report as failed.
Setting of either the ActionResult or Continue parameters will not override this.

OnSt
atusM
essage

Action

:

<TActio

n>

The instance of the current action.
Allows access to the action properties
and methods.

All properties are set to values used
during the run of the action.

StatusM

essage

:

TStatus

Message

The status message object contains
all information relating to the message
being logged (Lines, MessageText,
MessageTitle, and Progress).

Called whenever the action generates a log message.

Actions will generate this event when the action has received output from the
underlying tool, or when the action itself has something to report. The
StatusMessage may contain zero-to-many lines of text and is in the format directly
seen in the log.

As formatting depends on the tool being used we advise using the RegExp function

to parse the output if required. Also please review the object type for more TString
information on how to access the contents of the messages.

Run-time errors produced by this script will cause the action to report as failed.

https://wiki.finalbuilder.com/display/FB8/Accessing+TStrings+Based+Properties

	NGen 2.0 Install Native Image Action

