
Part 4: Create your First Action
This tutorial continues on from the previous tutorials , and Part 1: Create your First Project Part 2: Create your First Configuration Part 3: Create your First

 and it is recommended that these are completed before reading this tutorial.Repository

So far we have created a project, attached a configuration and created a repository, however we still cannot run a build! Fear not, by the end of this tutorial
you will be ready to run your first build.

In this tutorial we will be creating a MSBuild action that will build our Fluent NHibernate source repository. This tutorial assumes you have the .NET 4.0
Framework installed on your server.

Attempting to Run a Build

Go ahead and try running a build. The easiest way to run a build is by using the on the configuration tile. The Quick Build button (Fast forward icon)
quick build action will run a build with default parameters passed into the build process.

Once the build has run, it will turn red, as shown below. The reason the build failed is that there are no actions for the build to complete. Well this is easily
fixed by adding some actions to the in the . Click the on Configuration Workflow Configuration Wizard Edit Configuration button (Edit pencil icon)
the configuration tile to enter the Configuration Wizard then navigate to the of the Configuration Wizard.Stages section

Stages & Workflow Editor

Welcome to the Stage & Workflow Editor. This is where you define the individual actions that will run when a build is executed. For more detailed
information on working with workflows, check out the section.Stages

https://wiki.finalbuilder.com/display/continua/Part+1%3A+Create+your+First+Project
https://wiki.finalbuilder.com/display/continua/Part+2%3A+Create+your+First+Configuration
https://wiki.finalbuilder.com/display/continua/Part+3%3A+Create+your+First+Repository
https://wiki.finalbuilder.com/display/continua/Part+3%3A+Create+your+First+Repository
https://wiki.finalbuilder.com/display/continua/Stages

Stages

Continua CI creates a default 'Build' Stage when a new configuration is created and this stage is displayed near the top of the page in the Stage Editor.
Each stage is represented as a blue chevron and is accompanied by a stage gate, which is represented as a box with a triangle cut out. Stages can be
used as a way to break a complex build process into smaller, logical pieces. For example, your build may consist of a build stage, a test stage and a
deployment stage. For this tutorial however the default 'Build' stage will be all we need.

Actions

Actions are the individual build steps that are executed when a build is run. These actions range from running a batch file to running a build runner and
executing unit tests. All actions are defined and controlled through the bottom section of the stages page. On the left you can find all available actions and
to the right is the Workflow Editor where the action execution order is defined.

So lets create our first action by navigating to the as seen below. Selecting the Build Runners category will display all available Build Runners category
build runner actions that can be executed within Continua. For this tutorial we want to build our Fluent NHibernate source code using MSBuild, so lets add
a by clicking .MSBuild Action MSBuild

https://wiki.finalbuilder.com/display/continua/MSBuild+Action

Selecting an action will bring up the action dialog where you can set all the properties for your MSBuild action. In this tutorial we will need to point this
action to the Fluent NHibernate Example .csproj file, so lets set the Project File property to $Source.Fluent_Nhibernate$/src/Examples.FirstProject
/Examples.FirstProject.csproj. Continua CI supports which we are using in this field to point to our repository. You can Variables, Objects & Expressions
see that we are using $Source.Fluent_Nhibernate$ to point to our repository rather then providing a concrete file path. This is done so that you do not
need to worry about where repositories are located as Continua CI looks after all repository management for you. So lets breakdown what is happening
when we define our project file as $Source.Fluent_Nhibernate$/src/Examples.FirstProject/Examples.FirstProject.csproj.

Continua allows you to specify dynamic objects and variables that are then given values when a build is executed. Dynamic objects and expressions are
registered with surrounding $ symbols. In the image below you can see that specifying $Source.$ displays a dropdown that lists all the repositories that
can be accessed from this configuration. At the moment we only have our Fluent NHibernate repository, however any other repositories that may have
been created will also display in this list. So by setting the project file to $Source.Fluent_Nhibernate$, we are pointing Continua to our Fluent_NHibernate
repository. If you called your repository a different name then this property will need to reflect the new name. ie. $Source.<repo_name>$

Anything that follows $Source.Fluent_Nhibernate$ refers to the file structure of the repository itself. So by specifying /src/Examples.FirstProject/Examples.
FirstProject.csproj we are telling Continua to get the Examples.FirstProject.csproj file from the src/Examples.FirstProject folder of the repository. On the Git

 you can see the project's repository structure. In the two images below, you can see how we point to the .csproj file in Hub Fluent NHibernate page
Continua CI and how the project's file structure looks over at GitHub.

https://wiki.finalbuilder.com/pages/viewpage.action?pageId=655772
https://github.com/jagregory/fluent-nhibernate/tree/master/src
https://github.com/jagregory/fluent-nhibernate/tree/master/src

For this tutorial we need to set , set the action to , set to , set to and set Project File enabled Configuration Release Output Path $Workspace$/Output
the Using property to whichever .NET Framework version that is installed on the server.

You should notice that we also used a dynamic expression when setting the output path. In this case we used the expression $Workspace$. This
expression is extremely important in Continua as it references the workspace folder on the agent where all your build actions will be executed. As each
build is executed it dynamically creates new temporary directories on the agent while the build is executing. These directories will always be created in the
ContinuaAgent folder which you specified when you installed the agent. The reason you should always refer to your build files using $Workspace$ is that
you do not know the directory name or structure at runtime. By using $Workspace$, you will always be referencing the root folder for a specific build on the
agent.

You may also notice that we are specifying that this project should be built in the subfolder By default, every stage will copy all the files from the 'Output'.
output folder back to the Continua server once the stage has completed. This copying of data between the agent and server is defined on the stage itself
using . For this tutorial however, the default workspace rule is all we need, as long as our project is built in .Workspace Rules $Workspace$/Output

The property is used to tell Continua which version of the .NET Framework it should use when executing the MSBuild action. This Using property Using
uses to point Continua to the correct application it should use when performing a task. Unless your .NET framework was installed in a property collectors
non-standard directory, the default should find MSBuild. If Continua cannot find MSBuild then a new property collector will need to be Property Collector
specified in the administration section.

Once your MSBuild action has been configured, click Save which will add your action to the Workflow editor, as shown below.

If you were to create additional actions then these would also be added to the Workflow editor underneath your MSBuild action. In Continua, actions
toward the top of the list are executed before actions that are towards the bottom. For now though, the MSBuild action is all we need to build our project so
lets save our workflow by clicking .Save & Complete Wizard

Congratulations, you have created your first action workflow! Continue on to where we demonstrate how to run your build and access Part 5: Using Builds
all the build information.

Continue to Part 5: Using Builds

https://wiki.finalbuilder.com/display/continua/Workspace+Rules
http://wiki.finalbuilder.com/pages/viewpage.action?pageId=656150
http://wiki.finalbuilder.com/pages/viewpage.action?pageId=656150
https://wiki.finalbuilder.com/display/continua/Part+5%3A+Using+Builds
https://wiki.finalbuilder.com/display/continua/Part+5%3A+Using+Builds

	Part 4: Create your First Action

