Analysing Output

Action output monitors make it easy to react to the presence of a word, such as "error" in the output from an action.

Example Problems

If you want to abort the build when there are more than five errors, or there is a requirement to process each line of the output somehow. The following are
some solutions to those two problems;

Counting warnings
The key is to log the output of the action to a variable, then analyse the contents of the variable. You'll need two variables, "Output" and "Count"

First, on the Runtime tab of the relevant action, go to "Logging Properties" and select "Log to Variable".

Build VS.Net Solution (=]

Solution Paths Build .MET Version Win32 Version Project Detection

General Runtime Options a

Action Enabled
[| 1gnore Failure

bl Timing Properties
Action Logging Properties

.

Log Output Properties

[| Hide action from log (except when in error)

=

[| Suppress Log Messages [no logging messages are logged to file or the live log]
Log to Variable [Dutput v]

[Log action properties

(C

o] (e | [ven]

*D} Execute Condition

Seript Language © | VBScript - | Condition must return a boolean value (True or False)
Condition syntax defined by script language

| ok | | cencel][Help

Next, use a "Text Find / Replace" action to count the number of times the string appears:

https://wiki.finalbuilder.com/display/FB8/Action+Output+Monitors
https://wiki.finalbuilder.com/pages/viewpage.action?pageId=10554517

Text Find / Replace

General Runtime WaheEpgss@ Feplace Behaviour

Eﬁ Source’ ﬁﬁ

() Search in file:

=
(71 search in files from FileSet:
@ Search in variable contents:
| output -
/5_ h
o' Search String -
F ng
: warning| -

[] whale words only [| Match as regular expression
[] whale lines only Match instances:
[T u=e wildcards * and ? All -

Case Sensitive

| [concel | | Heb

On the Behaviour tab, set the variable to hold the number of matches:

Text Find / Replace

General Runtime Find String Replace WEEiENEO

Behaviour - ﬁﬁ

i) Don't fall based on number of matches

() Fail if there is LESS than 1 % | match.
(") Fail if there is MORE than 1 % | match.
i@ Putmatch count into variable | Count =

EE Matches

Count total matches for all files

(@) Count matches for each file

Now you're all set to use the variable however you like:

&M Build V5.Met Solution [%:SolutionFile%:]
® TextFind [: warning] in [Qutput]
= B If [%Count®] == [5]

K& E]
OO0

<]

Stop Run [Failure]

Processing a log line by line
Let's say the output from some external program is very verbose, and all you want is lines that contain "Image: " followed by a filename.
Start by logging the output of action to the Output variable. You will also need a variable to hold each line of output. Call it "Line".

Next, use a List Iterator Action action. Use %Output% as the "List of Items" value. At runtime, it will be expanded to the full value of the log. Don't worry
about the size, FinalBuilder has a very large upper limit on variable size.

https://wiki.finalbuilder.com/display/FB8/List+Iterator+Action

List Iteratar

General Runtime EREEE Separator

@ List of Items E}]
S0UtpUtYs k .
F P

= .

Q Options
Variable
[Line v]
Skip blank entries

Leave the "List Separator" settings as the default: a carriage return/line feed.

Now for each line, we use a Text Find / Replace action to reduce a line containing the key string down to just the image filename itself:

Text Find / Replace

General Runtime WaheEpgss@ Feplace Behaviour

) e =

(71 Search in file:

=
(71 search in files from FileSet:
@ Search in variable contents:
[Line -
/5_
f ' Search String
~Image: (.¥)& -

Whole waords only [¥]Match as regular expression;
Whale lines anly Match instances:
Use Wildcards *and ? Al -

Case Sensitive

| [Cancel] [Help

This regular expression means "beginning at the start of the line, match the word Image, a colon, a space, then store the whole rest of the line as
subexpression 1".

On the Replace tab, we write that subexpression back to the same variable:

Text Find / Replace

General Runtime Find String Behaviour

e

ﬁ Replace Options ° c

iy

(71 Do not replace text
i@ Replace text and write back to variable
() Replace text and write to file:

=
(71 Replace text and write to other variable:
Replacement String
21 -

Expand variable names in replacement string

Substitute regular expression matches (syntax is
&8, 50, 51, 52, etr.)

Finally, on the Behaviour tab, we set the action to fail if it didn't match. We do this because we want to do further processing on a line that matches.

Test Find / Replace =

General Runtime Find String Replace WEEiENEO

Behaviour ﬁﬁ

i) Don't fall based on number of matches

@ Fail if there is LESS than; 1 % match.

(") Fail if there is MORE than | match.

() Put match count into variable

Count total matches for all files

(@) Count matches for each file

| ok || cancel | | Hel

Now, we can add whatever processing we like. The "line" variable at this point contains just the name of the image found in the output. We set the "Text
Replace" action to ignore failure. The loop should carry on for each line that doesn't have the text we're looking for.

Description Enabled Ignore Failure Status
in Execute Program [ProcessFiles.exe]
= ”ﬂ List Iterator [Iterator variable: Line]
=~ =3 TextReplace [~Image: (.*)S...] with [$1] in [Line]
Copy File(s) [%6line%s -= J:'\Backup!]

K E EE
OEOO

There we have it!

Summary

. The program runs, logging its output to a variable called "Output”

. The list iterator cycles over that output, placing each line in a variable called "Line"

. The Text Replace action then reduces that line down to just the image name, or fails if it's not an image line.
. If the text is found, the file is then copied somewhere.

HONPE

	Analysing Output

